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Abstract. Turbo codes are a very efficient method for communicating reliably through a noisy channel.
There is no theoretical understanding of their effectiveness. In reference [1] they are mapped onto a class of
disordered spin models. The analytical calculations concerning these models are reported here. We prove
the existence of a no-error phase and compute its local stability threshold. As a byproduct, we gain some
insight into the dynamics of the decoding algorithm.

PACS. 75.10.Hk Classical spin models – 75.10.Nr Spin-glass and other random models –
89.70.+c Information science

1 Introduction

Communication through a noisy channel is a central prob-
lem in Information Theory [2]. Error correcting codes are
a widespread method for compensating the information
corruption due to the noise, by cleverly increasing the
redundancy of the message. Turbo codes [3–5] are a re-
cently invented class of error correcting codes with nearly
optimal performances. They allow reliable communication
(i.e. very low error per bit probability) with practical com-
munication rates.

It is known, since the work of Sourlas [6–9], that there
exists a close relationship between the statistical behavior
of error correcting codes and the physics of some disor-
dered spin models. Recently the tools developed in sta-
tistical physics have been employed in studying Gallager-
type codes [10–12].

In reference [1] the equivalence discovered by Sourlas
is extended to turbo codes, and the basic features of
the corresponding spin models are outlined. A remark-
able property of a large family of turbo codes, presented
in reference [1], is the existence of a no-error phase. In
other words the error probability per bit vanishes beyond
some critical (finite) signal to noise ratio. In reference [1]
some intuitive arguments supporting this thesis are given.
Some analytical results concerning the critical value of
the signal to noise ratio are announced without giving
any derivation. These results are compared with numeri-
cal simulations.

In this paper we present the analytical results in their
full generality, and explain their derivation. We prove the
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existence of the no-error phase and find the condition for
its local stability. This condition is derived in two different
approaches. In the first one we study the asymptotic dy-
namics of the decoding algorithm. In the second approach
we use replicas and establish the condition for stability in
the full replica space. Local stability is a necessary but not
sufficient condition for the stability of the no-error phase.
The critical signal to noise ratio obtained from local sta-
bility is the correct one only if the phase transition is a
second order one: in the general case it is only a lower
bound.

The spin models which are equivalent to turbo codes
have the following statistical weight [1]:

P(σ(1),σ(2)|J, β) ≡ 1
Z(J, β)

e−β
P2
k=1 H

(k)(σ(k))

×
N∏
i=1

δ
(
ερ(i)(σ(1)), εi(σ(2))

)
, (1.1)

H(k)(σ) ≡ −
N∑
i=1

J
(k)
i εi(σ)−

N∑
i=1

h
(k)
i ηi(σ), (1.2)

where δ(·, ·) is the Kronecker δ function. The dynam-
ical variables of the model are the 2N spins σ(k) ≡
{σ(k)

1 , . . . , σ
(k)
N } with k = 1, 2. They are divided in two

chains σ(1) and σ(2) of length N . We shall choose them to
be Ising spins1, that is σ(k)

i = ±1. The spins enter in the
Hamiltonians H(k)(σ) through the local interaction terms
εi(σ) and ηi(σ) which are products of σ’s. Their exact
form can be encoded in two set of numbers κ(j; 1) = 0 or
1, and κ(j; 2) = 0 or 1 with j = 0, . . . , r, as follows: εi(σ) ≡∏r
j=0 σ

κ(j;1)
i−j and ηi(σ) ≡

∏r
j=0 σ

κ(j;2)
i−j . In order to fix

1 This corresponds to considering codes which work with a
binary alphabet.
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completely our notation we set κ(0; 1) = κ(0; 2) = 1. No-
tice that the two Hamiltonians H(1)(σ(1)) and H(2)(σ(2))
have the same structure but different (random) couplings:
{J(1)
i ; h(1)

i } for H(1), and {J(2)
i ; h(2)

i } for H(2). The δ

function enforces the constraints ερ(i)(σ(1)) = εi(σ(2)) for
i = 1, . . . , N , ρ being a random permutation of N objects.
The quenched variables are listed below.

– The couplings J ≡ {J(k)
i ;h(k)

i }, whose distribu-
tion P(J) ≡

∏N
i=1

∏2
k=1 PJ (J(k)

i ) Ph(h(k)
i ) satis-

fies the conditions
∫

dJ(k)
i PJ(J(k)

i ) J
(k)
i > 0 and∫

dh(k)
i Ph(h(k)

i ) h(k)
i > 0. A typical choice is to take PJ

and Ph Gaussian with positive mean. In the following
we shall drop the subscripts in PJ and Ph.

– The permutation ρ : {1, . . . , N} → {1, . . . , N}, which
has uniform distribution: any of the N ! permutations
of N objects is taken with the same probability (1/N !).

It is useful to keep in mind an example of such models.
A very simple example is constructed by taking κ(0; 1) =
κ(1; 1) = 1, κ(j; 1) = 0 for j ≥ 2, and κ(0; 2) = 1,
κ(j; 2) = 0 for j ≥ 1. This yields εi(σ) = σiσi−1 and
ηi(σ) = σi. This example will be reconsidered in Section 3.
The probability distribution (1.1) becomes in this case

Pex(σ(1),σ(2)|J, β) ≡ 1
Z(J, β)

e−β
P2
k=1 H

(k)(σ(k))

×
N∏
i=1

δ
(
σ

(1)
ρ(i)σ

(1)
ρ(i)−1, σ

(2)
i σ

(2)
i−1

)
,

(1.3)

H(k)
ex (σ) ≡ −

N∑
i=1

J
(k)
i σiσi−1 −

N∑
i=1

h
(k)
i σi.

(1.4)

In this example each one the two Hamiltonians H(1)(σ(1))
and H(2)(σ(2)) describes a one-dimensional Ising model
with random nearest-neighbour interactions and random
magnetic field. However, the two spin chains σ(1) and σ(2)

are not independent due to the δ function constraints, see
equation (1.3), which impose σ(1)

ρ(i)σ
(1)
ρ(i)−1 = σ

(2)
i σ

(2)
i−1 for

any i = 1, . . . , N . With appropriate boundary conditions,
this constraints allow to determine the spin variables σ(1)

i ,
for i = 1, . . . , N , once the configurationσ(2) has been fixed
(and vice versa). The independent spin degrees of freedom
are only N rather than 2N . This is a general feature of the
models (1.1): it holds for any non-trivial choice of εi(σ).
Nevertheless it is convenient to use the redundant formu-
lation of the model adopted in equations (1.1, 1.2), i.e. in
terms of both σ(1) and σ(2).

We shall impose a fixed boundary condition at one end
of the chain (i.e. σ(k)

i = +1 for i ≤ 0 and k = 1, 2) and
a free boundary condition at the other end. The model is
composed by two one-dimensional substructures (chains),
which interact through the Kronecker delta functions in
equation (1.1). When the average over permutations is

taken into account this interaction turns into a mean field
one. This interplay between the two subsystems, each one
possessing a one-dimensional structure, and the mean field
interaction which couples them is clearly displayed by
the analytical calculations. For further explanations on
equations (1.1, 1.2) and their motivation we refer to [1].

The paper is organised as follows. In Sections 2 and 3
we present a first derivation of the stability condition. We
write a “mean field” equation which describes the dynam-
ics of the decoding algorithm (Sect. 2), we show that it
possesses a no-error fixed point and then study its behav-
ior in a neighbourhood of this fixed point (Sect. 3). Thanks
to this derivation we will understand how this fixed point
is reached. In Section 4 replicas are introduced in order to
compute the average over the permutations. We exhibit
the no-error saddle point. In Section 5 the stability of the
no-error saddle point is studied by diagonalizing the sec-
ond derivative of the free energy. Finally in Section 6 the
validity of our calculations is discussed. Appendix A col-
lects some useful (although simple) facts of algebra. In
Appendix B the type of integral equations which appear
in Section 3 is studied in detail. Finally in Appendix C we
describe the derivation of the replicated partition func-
tion, which is the first step of Section 4.

2 A “mean field” equation for the decoding
algorithm

Some properties concerning the models defined by
equations (1.1, 1.2) can be obtained by considering the
“turbo decoding” algorithm and making some factoriza-
tion hypothesis. These hypothesis enable us to obtain a
recursive integral equation for the probability distribu-
tion of a local field. They can be justified on heuristic
grounds and arguments of this kind will be given later in
this section. Moreover the replica calculation presented in
the Section 4 does support our arguments. In particular
this approach allows us to derive the critical noise below
which “perfect” decoding is possible.

Turbo decoding is an iterative algorithm. The iteration
variables are the fields Γ (k) ≡ {Γ (k)

1 , . . . , Γ
(k)
N } with k =

1, 2. The step t of the turbo decoding algorithm is defined
as follows [1]:

Γ
(1)
i (t+ 1) =

1
β

arctanh
[
〈ερ−1(i)(σ)〉(2)

Γ (2)(t)

]
− Γ (2)

ρ−1(i)(t),

(2.1)

Γ
(2)
i (t+ 1) =

1
β

arctanh
[
〈ερ(i)(σ)〉(1)

Γ (1)(t)

]
− Γ (1)

ρ(i)(t) .

(2.2)

The expectation value 〈·〉(k)

Γ (k) is intended to be taken
with respect to the Boltzmann weight with the modified
HamiltonianH(k)(σ)−

∑N
i=1 Γ

(k)
i εi(σ). The iteration vari-

ables Γ (k)
i should be interpreted as external fields conju-

gate to the operators εi(σ(k)). They describe, in an ap-
proximate way, the action of each of the two chains on the
other one.
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In order to lighten the notation, let us write
equations (2.1, 2.2) in the form:

Γ (k)(t+ 1) = F (k)
ρ

(
Γ (k′)(t),J(k′)

)
, (2.3)

with k′ = 2 if k = 1, and k′ = 1 if k = 2. Due to the
randomness in the couplings J, the fields Γ are random
variables. Equation (2.3) implies an integral equation for
the probability distribution of Γ :

Pt+1(Γ (k)) =
∫

dΓ (k′)

∫
dJ(k′)Pt(Γ (k′),J(k′))

× δ
[
Γ (k) − F (k)

ρ

(
Γ (k′),J(k′)

)]
. (2.4)

Let us state a few approximations which allow us to reduce
equation (2.4) to a much simpler one.

(1) We make the substitution Pt(Γ (k′),J(k′)) →
Pt(Γ (k′))P(J(k′)) in equation (2.4). This yields a
closed integral equation describing the evolution of
the distribution Pt(Γ (k)).

(2) We neglect correlations between the fields at different
sites:

Pt(Γ (k)) '
N∏
i=1

π
(k)
i,t (Γ (k)

i |ρ) , (2.5)

where we made explicit the dependence of the proba-
bility distributions π(k)

i,t upon the specific permutation
ρ which defines the code.

These two hypothesis imply that equation (2.4) is equiv-
alent to:

π
(k)
i,t+1(y|ρ) =

∫ +∞

−∞
dπ(k′)

t [x|ρ]

×
∫

dP [J]δ
(
y − 1

β
arctanh

(
〈ερ̂(i)(σ)〉J,x

)
+ xρ̂(i)

)
,

(2.6)

dπ(k′)
t [x|ρ] ≡

N∏
i=1

dxi π
(k′)
i,t (xi|ρ), (2.7)

where ρ̂ is the appropriate permutation of {1, . . . , N}, i.e.
ρ̂ = ρ−1 if k = 1 and ρ̂ = ρ if k = 2. The expecta-
tion value 〈·〉J,x on the right hand side of equation (2.6)
has to be taken with respect to the Hamiltonian H(σ) ≡
−
∑N
i=1(Ji + xi)εi(σ)−

∑N
i=1 hiηi(σ).

Let us now define a field distribution averaged over the
permutations and the sites:

π
(k)
t (x) ≡ 1

N !

∑
ρ

1
N

N∑
i=1

π
(k)
i,t (x|ρ). (2.8)

We can now state our last approximation.

(3) We make the substitution π
(k)
i,t (x|ρ) → π

(k)
t (x) on the

right hand side of equation (2.6).

With this substitution, we can average equation (2.6) over
ρ, obtaining a recursive equation for π(k)

t :

πt+1(y) =
1
N

N∑
i=1

∫ +∞

−∞
dπt[x]

×
∫

dP [J] δ
(
y − 1

β
arctanh

(
〈εi(σ)〉J,x

)
+ xi

)
. (2.9)

The indices (k) and (k′) have been dropped since we
can define πt = π

(1)
t for t odd, and πt = π

(2)
t

for t even, or vice versa. A byproduct of this heuris-
tic derivation is the expression for the probability dis-
tribution of the expectation values 〈εi(σ)〉 after t it-
erations of the turbo decoding algorithm: Pt(ε) =
1
N

∑N
i=1

∫ +∞
−∞ dπt[x]

∫
dP [J] δ

(
ε− 〈εi(σ)〉J,x

)
.

Let us discuss the validity of the approximations made
in deriving equation (2.9).

(1) and (2) These approximations should be accurate in
the thermodynamic limit for a generic random per-
mutation ρ. The reason is that the correlations pro-
duced by equations (2.1, 2.2) have short range: 〈εi(σ)〉
and 〈εj(σ)〉 have a significant correlation only if |i− j|
is less than some characteristic length. The random
permutation ρ reshuffles the sites so that the cor-
relation between two fields Γ (k)

i and Γ
(k)
j is vanish-

ing with high probability if |i − j| is required to be
“small”. The correlations which “survive” (non vanish-
ing only between “distant” sites) are irrelevant when
computing the expectation values of local operators.
In order to make this last assertion plausible, let us
suppose that, for each site i, we can find a “large”2

interval [i − L(N), i + L(N)] of the chain, such that
the correlations between the couplings inside the in-
terval are negligible. The expectation value 〈εi(σ)〉J,x
will not depend (as N →∞) upon the couplings out-
side [i − L(N), i + L(N)] (this is always true in one
dimension at non zero temperature) and can be then
safely computed without taking into account the cor-
relations. It is easy to find a similar argument con-
cerning the correlations between Γ (k′) and J(k′) in
equation (2.4).

(3) This is the probabilistic analogue of the replica sym-
metric approximation. Let us consider the fixed point
equation πt+1 = πt corresponding to the dynamics de-
fined by equation (2.9). It is remarkable that this fixed
point equation coincides with the saddle point equa-
tion obtained by the standard replica method in the
replica symmetric approximation (see Sect. 4). This
fact confirms our conclusions about the relevance of
the various approximations.

3 The behavior of the decoding algorithm

Equation (2.9) is the final outcome of our heuristic deriva-
tion. We want to study its behavior when the distribution

2 Here “large” means that limN→∞ L(N) =∞.
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π(x) is concentrated on large values of the field x, that is
when the error probability is very small. In this regime the
most relevant spin configuration satisfies εi(σ) = +1 for
each i = 1, . . . , N . The lowest excitations are such that
εi(σ) = −1 only on a few sites. The first crucial point
will be to understand that, for a class of Hamiltonians of
the type (1.2) (which will be defined as “recursive”), the
energy to be paid for flipping a single ε variable diverges
in the thermodynamic limit. The second point will be to
evaluate the energy to be paid for flipping two ε variables.
In order to treat both these passages in full generality it
is convenient to use an algebraic bookkeeping technique
which we shall soon explain. The results concerning these
two points will be useful again in Section 5.

A preliminary step consists in making the change of
variables Xi ≡ e−2βxi and introducing the correspond-
ing distribution function Qt(X)dX = πt(x)dx. Low X ’s
correspond then to large local fields, i.e. to low error prob-
ability. The result is

Qt+1(Y ) =
1
N

N∑
i=1

∫ ∞
0

dQt[X]

×
∫

dP [J] δ
(
Y − 1

Xi

Z(εi(σ) = −1; J,X)
Z(εi(σ) = +1; J,X)

)
, (3.1)

where

Z(εi(σ) = ε; J,X) ≡ Zi(ε)

=
∑

σ:εi(σ)=ε

e−βH(σ)
N∏
k=1

X
1
2 (1−εk(σ))

k , (3.2)

with H(σ) = −
∑
i Jiεi(σ)−

∑
i hiηi(σ). Let us introduce

some notations in order to write down the small X expan-
sion of Zi(ε): (k1, . . . , kl) is an l-uple (not ordered) of inte-
gers in {1, . . . , i− 1, i+ 1, . . . , N}; σ0 is the configuration
such that εi(σ) = +1 for all the sites i; σ(k, l,m, . . . ) is the
configuration such that εj(σ) = −1 if j = k, l,m, . . . and
εj(σ) = 1 otherwise (there is at most one such configu-
ration once the boundary conditions have been specified);
E0 ≡ H(σ0) is the energy of the ordered configuration;
finally ∆(k, l,m, . . . ) ≡ H(σ(k, l,m, . . . )) − H(σ0). The
following expressions are straightforward:

Zi(+1) = e−βE0

N−1∑
l=0

∑
(k1,...,kl)

Xk1 . . .Xkle
−β∆(k1,...,kl),

(3.3)

Zi(−1) = Xie−βE0

N−1∑
l=0

∑
(k1,...,kl)

Xk1 . . . Xkle
−β∆(i,k1,...,kl).

(3.4)

The “bookkeeping technique” which we shall adopt in
treating the above expansions consists in using the alge-
bra of “generating polynomials” [1]. This approach allows
us to consider a general Hamiltonian of the type (1.2).
Let us define the following polynomials on Z2: G(x) ≡∑∞
j=1Gjx

j , with σj = (−1)Gj ; gn(x) =
∑r
j=0 κ(j;n)xj ;

G(n)(x) ≡ gn(x) · G(x) ≡
∑∞
j=1 G

(n)
j xj . Notice that the

boundary condition on σ can be translated as follows:
G(x) is a series of strictly positive powers of x.

It is necessary to distinguish two types of models: in
the first case g1(x) divides g2(x), i.e. g2(x)/g1(x) is a poly-
nomial (these are the “non recursive” models, a particular
case being εi(σ) = σi); in the second one g1(x) does not
divide g2(x), i.e. g2(x)/g1(x) is a series (“recursive” mod-
els).

We shall treat the “recursive” models first. In this
case the first order terms in the expansions (3.3, 3.4)
are exponentially small in the size. In order to prove
this assertion, let us consider the configuration σ(l). The
relevant generating polynomials are G(1)(x) = xl and
G(2)(x) = xlg2(x)/g1(x). The form of G(2)(x) is given by
the following result of algebra
Lemma 3.1 Let g(x) and f(x) be two polynomials on Z2

such that g(0) = f(0) = 1, f(x) 6≡ 1, and their greatest
common divisor gcd(f(x), g(x)) is equal to 1. Then there
exists an integer ω such that g(x)/f(x) =

∑∞
n=0 x

nωpn(x)
with deg[pn(x)] < ω and pn(x) = p∞(x) 6= 0 if n is large
enough. Hereafter we shall call ω(f) the smallest of such
integers.

An explicit expression for ω(f) is given in the
Appendix A. The Lemma 3.1 applies to our case if
we divide both g1(x) and g2(x) by their greater com-
mon divisor: fk(x) ≡ gk(x)/ gcd(g1(x), g2(x)), so that
gcd(f1(x), f2(x)) = 1. It implies that if we write down
the numbers ηj(σ(i)) = ±1 we get an antiperiod followed
by a non trivial periodic sequence with period ω(f1). Let
us consider a site “in the bulk”: Nδ < i < N(1− δ) with
δ a (small) positive number. Then, using the convention
hj = 0 for j > N , we get:

∆(i) = 2Ji + 2
N∑
j=1

G(2)
j hj

= 2Ji + 2
∞∑
n=0

ω(f1)−1∑
k=0

pn,khi+nω(f1)+k, (3.5)

which diverges almost surely in the thermodynamic limit
if 〈h〉 > 0 (see the introduction on this point). In
equation (3.1) we must sum also terms which are “near”
the boundaries, i.e. i ≤ Nδ or i ≥ N(1 − δ). These give
however a negligible contribution.

Let us now consider the second order terms of the
expansions (3.3, 3.4). They involve configurations σ(k, l)
with two flipped ε(σ)’s. The only configurations which
give a non negligible contribution are the ones which in-
volve a finite (in the N → ∞ limit) number of flipped
η(σ)’s. This corresponds to choosing k and l such that
(xk + xl)g2(x)/g1(x) is a polynomial (and not an infi-
nite series). The following useful result is proved in the
Appendix A.

Lemma 3.2 Let f(x) be a polynomial on Z2 such that
f(0) = 1 and k an integer. Then there exists an inte-
ger ω(f) such that f(x) divides 1 + xk if and only if k is
a strictly positive multiple of ω(f).
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As suggested by the notation the ω(f)’s cited in
Lemmas 3.1 and 3.2 are indeed equal. The terms which
give a non vanishing contribution at order X2 in the ex-
pansions (3.3, 3.4) are the ones corresponding to config-
urations σ(k, l) such that |k − l| is a multiple of ω(f1).
In order to evaluate these terms we must count the
number of flipped η(σ)’s. This number is nothing but
the number of non zero coefficients in the polynomial
(xk + xl)g2(x)/g1(x). Let us define the weight of a poly-
nomial p(x) =

∑
k pkx

k over Z2 as the number of its non
zero coefficients: weight(p) ≡ # {pk|pk 6= 0}. The weight
of (xk+xl)g2(x)/g1(x) is given, for a large class of Hamil-
tonians, by the following lemma.

Lemma 3.3 Let f(x) and g(x) be two polynomial on
Z2 such that f(0) = g(0) = 1, f(x) 6≡ 1, and
gcd(f(x), g(x)) = 1. If deg(g) ≤ ω(f) then the weight of
sm(x) ≡ (1 + xmω(f))g(x)/f(x) is given by weight(sm) =
w0(f, g) + w1(f, g)m for each m ≥ 1. The coefficients
w0(f, g) and w1(f, g) are positive integers whose explicit
expressions are given by equations (A.8, A.9).

Appendix A contains also an illustration of what could
happen in the more general case.

By using Lemmas 3.2 and 3.3 we can linearize with
respect to X the expression on the r.h.s. of equation (3.1):

1
Xi

Zi(−1)
Zi(+1)

=
∑
m6=0

Xi+mω(f1)e−β∆(i,i+mω(f1)) +O(X2),

(3.6)

and defining sm(x) ≡ (1 + xmω(f1))g2(x)/g1(x) =∑
j sm,jx

j we get

∆(k, l) = 2Jk + 2Jl + 2
∑
j

sm,jhmin(k,l)+j (3.7)

if |k− l| = mω(f1). Clearly equation (3.6) holds only for i
in the “bulk” (i.e. Nδ < i < (1− δ)N) up to terms which
are exponentially small in the size N .

Our first important observation is that the right hand
side of equation (3.6) vanishes if Xk = 0 for k = 1, . . . , N .
This means that Q∗(X) = δ(X) is a fixed point of
equation (3.1) for “recursive” models. Recall that the
change of variables which yields equation (3.1) is X =
e−2βx and that x has the meaning of an effective field act-
ing on εi(σ). The solution Q∗(X) corresponds then to a
phase with completely frozen spins: 〈εi(σ)〉 = +1.

We would like to understand if this phase is stable
for some temperature β and some distribution of the cou-
plings. A possible approach is to study the turbo decoding
dynamics (as described by Eq. (3.1)) when starting from a
distribution “near”Q∗(X). Let us suppose that, forQt(X)
near enough to Q∗(X), we can safely neglect O(X2) terms

on the r.h.s. of equation (3.6):

Qt+1(Y ) =
1
N

N∑
i=1

∫ ∞
0

dQt[X]

×
∫

dP [J] δ

Y −∑
m6=0

Xi+mω(f1)e−β∆(i,i+mω(f1))

 .

(3.8)

This equation is very similar to a class of recursive equa-
tions which appear in a completely different context: poly-
mers on disordered trees [13–17]. These are of the type

Pt+1(Z) =
∫ ∞

0

K∏
i=1

dZi Pt(Zi)

×
∫
ρ(V1, . . . , VK) dV1 . . .dVK δ

(
Z −

K∑
i=1

e−βViZi

)
.

(3.9)

The only non trivial difference is that the linear func-
tion of X appearing inside the delta function on the
r.h.s. of equation (3.8) depends upon a macroscopic (in-
deed linear in N) number of X ’s. In equation (3.9),
instead, only a finite number of variables appears: K
is the coordination number of the tree minus one. No-
tice however that, for m large, ∆(i, i + mω(f1)) ∼
2 weight(sm)〈h〉 ∼ 2w1(f1, f2)m〈h〉. We can thus truncate
the sum in equation (3.8) to m ≤ M by making an error
of order O(e−cM ) and we guess that the limit M → ∞
can be taken at the end without problems3.

Let us summarize some results of [13] which are useful
in our discussion. It turns out that equation (3.9) is equiv-
alent to a discretization of the Kolmogorov-Petrovsky-
Piscounov (KPP) equation [18] (a well studied partial dif-
ferential equation). Using this equivalence the large time
limit of equation (3.9) is obtained:

Pt(X)→ e−βc(β)t P (Xe−βc(β)t), (3.10)

corresponding to a wavefront solution of the KPP equation
with front velocity c(β). If we define the function

v(β) ≡ 1
β

log

(
K∑
i=1

∫
dV1 . . .dVK ρ(V1, . . . , VK) e−βVi

)
,

(3.11)

then the front velocity is given by the following
construction:

c(β) =
{
v(β) if β ≤ βc ,
v(βc) if β > βc ,

(3.12)

3 This argument is not mathematically rigorous since it is
not honest to use the central limit theorem in this case: we
refer to Appendix B for more convincing arguments.
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eβv(β) =

2

�Z
dJ P (J) e−2βJ

�2 �Z
dh P (h) e−2βh

�w0(f1,f2)+w1(f1,f2)

1−
�Z

dh P (h) e−2βh

�w1(f1,f2)
· (3.15)

with βc given by

d
dβ

∣∣∣∣
βc

v(β) = 0 . (3.13)

At the critical temperature βc a freezing phenomenon
takes place with the front velocity sticking to its minimal
value.

Let us apply these results to our case, i.e. to
equation (3.8). The large time solution Qt(X) ∼
e−βc(β)tQ(Xe−βc(β)t) gives the correct behavior for
t→∞ only if c(β) < 0. In this case limt→∞Qt(X) =
Q∗(X) and it is then correct to linearize equation (3.1):
the frozen phase is stable. If, on the other hand, c(β) ≥ 0
then we must take into account higher order terms in the
low X expansion and the asymptotic form is no longer of
the type defined by equation (3.10): the frozen phase is
unstable.

In the thermodynamic limit we get

eβv(β) =
∑
m6=0

∫
dP [J]e−β∆(i,i+mω(f1)) (3.14)

= 2
(∫

dJ P (J) e−2βJ

)2

×
∞∑
m=1

(∫
dh P (h) e−2βh

)weight(sm)

.

The front velocity c(β) is obtained by applying the con-
struction given in equations (3.12, 3.13) to equation (3.14).
If the hypothesis of Lemma 3.3 are satisfied we can easily
sum the series:

see equation (3.15) above.

We discuss now equation (3.15), the more general case
being completely analogous. The series converges only if∫

dh P (h) e−2βh < 1. If
∫

dh P (h) h > 0, as we supposed
since the beginning, then convergence is assured for 0 <
β < β1 with

∫
dh P (h) e−2β1h = 1. It is easy to see that

βv(β) is strictly convex for 0 < β < β1 and thus v(β)
has either one global minimum or is strictly monotonic
for 0 < β < β1. Since limβ→0+ v(β) = limβ→β−1

v(β) =
+∞ the first possibility is excluded and we conclude that
0 < βc < β1. The important point is that the right hand
side of equation (3.14) is well defined every time we need
of it, i.e. for 0 < β < βc.

In applications to turbo codes a simplification occurs:
we are interested in a particular temperature, β = 1, and
we are left with a unique parameter: the signal to noise
ratio 1/w2. Moreover the probability distributions of the

couplings are fixed by the characteristics of the communi-
cation channel [1,6]. If we introduce the auxiliary variables
Ĵ and ĥ, which correspond to the output of the channel,
the probability distributions are obtained as follows

P (J) dJ = P (Ĵ |+ 1) dĴ with J =
1
2

log
P (Ĵ |+ 1)
P (Ĵ | − 1)

,

(3.16)

where P (Ĵ |τ) is the probability distribution of the out-
put of the channel conditional to the input τ . A similar
expression holds for h. If the channel is symmetric (i.e. if
P (Ĵ | − 1) = P (−Ĵ | + 1)) one easily obtains β1 = 1 and
then c(β = 1, w2) = v(βc, w2). We can distinguish the two
cases defined below.

– If v(β,w2) < 0 for some 0 < β < 1 then we are
in the no-error phase and the turbo decoding algo-
rithm converges to the message with “velocity” c(β =
1, w2) = min0<β<1 v(β,w2). We expect the condition
v(βc, w2) < 0 to be verified in the “low noise” region
w2 < w2

loc.
– If v(β,w2) ≥ 0 in the interval 0 < β < 1 then c(β =

1, w2) ≥ 0 and the linearization in equation (3.8) is
no longer reliable. In this case πt(x) is expected to
converge for t→∞ to some distribution supported on
finite fields x. The decoded message will be plagued by
a finite error probability per bit, no matter how many
times do we iterate the turbo decoding algorithm.

Let us now study some examples. We consider a
Gaussian channel with:

P (Ĵ |τ) =
1

(4πw2)1/2
exp

{
− (Ĵ − τ)2

4w2

}
, (3.17)

P (ĥ|τ) =
1

(2πw2)1/2
exp

{
− (ĥ− τ)2

2w2

}
. (3.18)

This choice of the variances is justified since it corresponds
to a code with rate 1/3 (see Ref. [1]). It is useful to define
the function

z(β,w2) =
∫

dh P (h) e−2βh

=
(∫

dJ P (J) e−2βJ

)2

= exp
[

2β(β − 1)
w2

]
.

(3.19)

The three cases below have been already considered in
reference [1]. We refer to the Appendix A for the cal-
culation of the constants w0 and w1 to be used in
equation (3.15).
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(a) A model with nearest neighbours interaction is:
εi(σ) ≡ σiσi−1 and ηi(σ) = σi (which corresponds
to the generating polynomials g1(x) = 1 + x and
g2(x) = 1). This example has been already exhib-
ited in the Introduction, see equations (1.3, 1.4). Using
equation (3.15) and the fact that w0(f1, f2) = 0 and
w1(f1, f2) = 1 we get

v(β,w2) =
1
β

log
2z2(β,w2)

1− z(β,w2)
· (3.20)

It is easy to see that v(β,w2) ≥ 0 for each 0 < β < 1
if w2 ≥ w2

loc = 1/ log 4.
(b) For εi(σ) ≡ σiσi−1σi−2 and ηi(σ) = σiσi−2 (generat-

ing polynomials: g1(x) = 1+x+x2 and g2(x) = 1+x2)
we obtain w0(f1, f2) = 2 and w1(f1, f2) = 2 and then

v(β,w2) =
1
β

log
2z5(β,w2)

1− z2(β,w2)
· (3.21)

Finally w2
loc = −1/(2 log zc) where zc is the only real

solution of the equation 2z5 + z2 = 1.
(c) If we consider the model given by εi(σ) ≡

σiσi−1σi−2σi−3σi−4 and ηi(σ) = σiσi−4 (generating
polynomials: g1(x) = 1 +x+x2 +x3 +x4 and g2(x) =
1 + x4) we obtain w0(f1, f2) = 2 and w1(f1, f2) = 2
as in the previous example. Both v(β,w2) and w2

loc
coincide with the ones obtained above.
Let us make a few observations about the validity of

our calculation. The threshold w2
loc has been obtained

by starting from a distribution Q(X) very near to the
“frozen” one Q∗(X) and linearizing equation (3.1) in X .
It must then be interpreted as a threshold for local stabil-
ity of the “frozen” solution. Moreover, if we take seriously
the heuristic derivation of equation (2.9), we can deduce
something about the dynamics of the turbo decoding al-
gorithm in the error-free phase: the probability distribu-
tion of the auxiliary fields Γ (k)

i (t) moves towards infinitely
large fields with an average velocity c(β,w2). This con-
clusion is compared with numerical data in Figure 1: the
agreement seems to be quite good. An interesting outcome
of the previous calculation is that the approach to the per-
fect decoding becomes slower near to the critical signal to
noise ratio.

Let us now discuss the “non recursive” models, that
is models such that g1(x) divides g2(x). In this case the
energy ∆(i) to be paid for flipping ηi(σ) remains finite
in the thermodynamic limit. The low X expansions in
equations (3.3, 3.4) have a non vanishing term of order
O(X). This implies thatQ∗(X) = δ(X) is no longer a fixed
point of equation (3.1). Let us compute ∆(i). For “non
recursive” models we can define the polynomial s(x) ≡∑
k skx

k ≡ g2(x)/g1(x). It is easy to show that ∆(i) =
2Ji + 2

∑
k skhi+k. A simple approximation of the fixed

point of equation (3.1) is:

Q∞(X) ∼
∫

dJ P (J)

×
∫ w∏
i=1

dhi P (hi) δ
(
X − e−2βJ−2β

Pw
i=1 hi

)
, (3.22)
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Fig. 1. The dynamics of the turbo decoding algorithm. The
graph on the top gives the average of the local field Γi (see
Eqs. (2.1, 2.2)) as a function of the number of iterations for
different sizes of the system. The slope of the straight line on
the same graph indicates the asymptotic velocity obtained in
Section 3. The graph on the bottom gives the variance of the
distribution of the local field.

with w ≡ weight(s). This approximation is supposed to
be good in the low noise region where we expect the dis-
tributions Qt(X) to be concentrated on small X ’s.

4 The replica calculation

The replica method [19] starts with the computation of
the (integer) moments of the partition function. This can
be done by introducing an appropriate order parameter
(the choice is a matter of convenience) and by recurring
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to standard tricks. Here we choose to use the (multi)-
overlaps qa1...al and their complex conjugates q̂a1...al :

Zn =
∫
N

π
dq0 dq̂0

∫ ∏
a

N

π
dqa dq̂a

×
∫ ∏

(a,b)

N

π
dqab dq̂ab . . . e−NS[q,q̂], (4.1)

S[q, q̂] = −1 + q0q̂0 +
∑
a

qaq̂a +
∑
(a,b)

qabq̂ab + . . .

+n log 2 + βF1d,n[q] + βF1d,n[q̂], (4.2)

F1d,n[q] ≡ − lim
N→∞

1
Nβ

logZ1d,n[q], (4.3)

Z1d,n[q] ≡
∑
{σai }

N∏
i=1

[
q0 +

∑
a

qaεi(σa)

+
∑
(a,b)

qabεi(σa)εi(σb) + . . .


×
∫

dP [J] exp

{
−β
∑
a

H(σa; J)

}
, (4.4)

where H(σ; J) = −
∑
i Jiεi(σ) −

∑
i hiηi(σ), and the

replica indices a, b, . . . run from 1 to n. For a detailed de-
scription of the manipulations which lead to equation (4.1)
we refer to Appendix C.

The usual mean field models have no geometrical struc-
ture at all. In those cases the introduction of the order pa-
rameters leads to a (replicated) partition function which
factorizes over the sites. In our case we are left with the
problem of computing the one-dimensional partition func-
tions Z1d,n[q]. These correspond to the one-dimensional
sub-structures which are not destroyed by the random-
ness of the model. The saddle point equations are easily
written

q̂a1...al = lim
N→∞

1
N

N∑
i=1

〈
εi(σa1) · · · · · εi(σal)

[q0 +
∑
a qaεi(σa) + . . . ]

〉
q

,

(4.5)

where the expectation values 〈(·)〉q , 〈(·)〉q̂ are defined as
follows

〈( · )〉q ≡
1

Z1d,n[q]

∫
dP [J]

∑
{σai }

( · )

×
N∏
i=1

[q0 +
∑
a

qaεi(σa) + . . . ] e−β
P
aH[σa;J ] . (4.6)

In the recursive case equation (4.5) admits the follow-
ing solution4 corresponding to a no-error phase: q∗a1...al =
q̂∗b1...bl = 2−n/2. The free energy of this phase is f0(β) =
−2
∫

dJ P (J) J − 2
∫

dh P (h) h. If we parametrize the
replica symmetric ansatz as in reference [20]

qa1...al =
∫ +∞

−∞
dx π(x) coshn(βx) tanhl(βx), (4.7)

and analogously for q̂b1...bm (with a different distribution
π̂(x)), the following free energy functional can is obtained
in the limit n→ 0:

f [π, π̂] =
1
β

∫
dx dy π(x)π̂(y) log [2 cosh(βx+ βy)]

+ FRS
1d [π] + FRS

1d [π̂], (4.8)

FRS
1d [π] ≡ − lim

N→∞

1
βN

∫
dP [J]

∫
dπ[x] logZRS

1d [J,x],

(4.9)

ZRS
1d [J,x] ≡

∑
σ

exp

[
β

N∑
i=1

(Ji + xi)εi(σ)

+β
N∑
i=1

hiηi(σ)

]
. (4.10)

The distributions π and π̂ are normalized (
∫

dx π(x) =∫
dy π̂(y) = 1) and satisfy the saddle point equation

below:

π(y) = lim
N→∞

1
N

N∑
i=1

∫ +∞

−∞
dπ̂[x]

×
∫

dP [J] δ
(
y − 1

β
arctanh

(
〈εi(σ)〉J,x

)
+ xi

)
,

(4.11)

which is identical to the fixed point equation correspond-
ing to equation (2.9), if we suppose the order parameters
to be real at the saddle point.

Equation (4.11) is unpractical since it involves the
unknown distributions π(x) and π̂(x) infinitely many
times. However due to the short range structure of the
Hamiltonians defined in equation (1.2), it can be rewrit-
ten as a simple integral equation. Obviously the pre-
cise form of this equation depends upon the form of the
Hamiltonian (1.2). In particular it becomes simpler as
the range of the interaction becomes shorter. Let us illus-
trate this point by considering the model 3 of the previous
section: εi(σ) = σiσi−1, ηi(σ) = σi. We start by defining

4 In fact there is a one parameter family of solutions which
are degenerate. This fact is due to a (not very interesting)
symmetry of the action (4.2): S[q, q̂] = S[eiθq, e−iθ q̂]. However
the integration over the parameter θ does not pose any prob-
lem. We shall fix this freedom by imposing q0 to be real.
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the following (right and left) partition functions:

Z
(R)
i,M (σi) ≡

∑
σi+1...σi+M

exp

[
β

i+M∑
k=i+1

(Jk + xk)σkσk−1

+β
i+M∑
k=i

hkσk

]
, (4.12)

Z
(L)
i,M (σi) ≡

∑
σi−M ...σi−1

exp

[
β

i∑
k=i−M+1

(Jk + xk)σkσk−1

+β
i∑

k=i−M
hkσk

]
, (4.13)

and the (right and left) fields:

x
R/L
i ≡ lim

M→∞

1
2β

log
Z

(R/L)
i,M (+)

Z
(R/L)
i,M (−)

· (4.14)

We define now a new couple of order parameters, the prob-
ability distributions ω(x) and ω̂(x) of the right (or left)
fields:

ω(x) =
∫ ∏
i≥0

dhi P (hi)
∫ ∏
i≥1

dJi P (Ji)

×
∫ ∏
i≥1

dxi π(xi) δ
(
x− xR

0 [Ji;hi;xi]
)
. (4.15)

It is easy to show that, at the saddle point, ω(x) and ω̂(x)
satisfy the following integral equation:

ω(z) =
∫

dh P (h)
∫

dJ1 P (J1)
∫

dJ2 P (J2)

×
∫

dx1 ω̂(x1)
∫

dx2 ω̂(x2)
∫

dz′ ω(z′)

×δ {z − h−Θβ [z′;J1 + J2 +Θβ(x1;x2)]} ,
(4.16)

Θβ(x; y) ≡ 1
β

arctanh[tanh(βx) tanh(βy)], (4.17)

and that the solution of equation (4.11) is related to the
solution of the previous equation as follows:

π(x) =
∫

dJ P (J)
∫

dxL ω̂(xL)

×
∫

dxR ω̂(xR) δ[x− J −Θβ(xR;xL)]. (4.18)

Equation (4.16) reduces to the Dyson Schmidt
equation [21–23] for a one-dimensional model with
nearest neighbour interaction if we keep the distri-
bution ω̂(x) fixed. The interaction between the two
one-dimensional subsystems turns it into a nonlinear
equation. Moreover equation (4.16) can be treated
numerically more easily than equation (4.11). A pos-
sible approach consists in representing the unknown
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Fig. 2. The numerical results for the error probability per bit
(stars, ∗), compared with the analytical prediction (continuous
line). The analytical prediction is obtained, within the replica
symmetric approximation, from equation (4.16). This graph
refers to model 3 defined in Section 3.

distribution as ω(x) =
∑K
j=1 δ(x − xj) and iterating

equation (4.16) until a fixed point is reached. An example
of this kind of computations is shown in Figure 2.

It is simple to obtain the analogous of equation (4.16)
for the simplest non recursive model, defined by: εi(σ) =
σi, ηi(σ) = σiσi−1. The final result is

ω(z) =
∫

dh P (h)
∫

dJ1 P (J1)
∫

dJ2 P (J2)

×
∫

dx1 ω̂(x1)
∫

dx2 ω̂(x2)
∫

dz′ ω(z′)

×δ (z −Θβ [h;J1 + J2 + x1 + x2 + z′]) ,(4.19)

π(x) =
∫

dJ P (J)
∫

dxL ω̂(xL)

×
∫

dxR ω̂(xR) δ(x− J − xL − xR). (4.20)

A simple approximation to the solution of equation (4.19)
can be obtained by starting from a distribution
ω(x) supported on very large fields x and iterat-
ing equation (4.19) one time. The result is π(x) ∼∫

dJ P (J)
∫

dh1 P (h1)
∫

dh1 P (h1) δ(x − J − h1 − h2),
which coincides with the more general equation (3.22) af-
ter the change of variables X = e−2βx. No such approxi-
mation is possible for equation (4.16).

Expressions equivalent to equations (4.16, 4.19) can
be derived for more complicated types of interaction. In
general the distribution ω(x), which is defined on the real
line, will be replaced by a distribution defined on R2r−1,
r being the range of the Hamiltonian.
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5 The stability of the frozen solution

We would like to study local stability of the no-error phase
in the context of the replica method. This can be done5

by computing the eigenvalues of the matrices:

M±a1...al,b1...bm
[q] = δa1...al,b1...bm ±

∂2βF1d,n[q]
∂qa1...al∂qb1...bm

·

(5.1)

M±[q] are the mass matrices for purely real (M+[q]),
or purely imaginary (M−[q]), fluctuations of the order
parameter around the value q. We are interested in the
saddle point q∗a1...al = 2−n/2. In order to write down all
the 2n eigenvectors of M±[q∗] it is convenient to change
slightly our notation for the overlaps. Let us denote by
Ω ⊂ {1, 2, . . . , n} the set of l ≡ |Ω| different indices
(aΩ1 , . . . , a

Ω
l ). We can use the Ω’s as indices for the over-

laps with the natural identification qΩ ≡ qaΩ1 ...aΩl . It is not
difficult to show that

T
(N)
Ωa,Ωb

≡ 1
N

∂2 logZ1d,n[q]
∂qa1...al∂qb1...bm

∣∣∣∣
q=q∗

=
21−n

N

∑
(i,j)

∫
dP [J] enNβf−nβE0 (5.2)

×
(

1 + e−β∆(i,j)

)n [
tanh

(
β∆(i, j)

2

)]u
− N2

2

}
,

where ∆(i, j) is defined in Section 3, e−nNβf ≡∫
dP [J] e−nβH(σ0) and u ≡ ua1...al,b1...bm counts the in-

dices which are either in the set in Ωa ≡ (a1, . . . , al) or in
the set Ωb ≡ (b1, . . . , bm) but not in both. If q is an eigen-
vector of T (N) with eigenvalue θN , then it is an eigenvector
of M±[q∗] with eigenvalue µ± = 1∓ limN→∞ θN .

Notice that T (N) is an Hermitian matrix with respect
to the scalar product:

〈q, q′〉n ≡
n∑
l=0

∑
(a1,...,al)

q∗a1...al
q′a1...al

=
∑
Ω

q∗Ωq
′
Ω. (5.3)

We shall use another subset of {1, . . . , n} (let us call it Λ)
to label the different eigenvectors of T (N), which we now
exhibit:

q
(Λ)
Ω ≡ 1

2n/2
(−1)|Λ∩Ω| . (5.4)

The vectors {q(Λ)} form an orthonormal set with respect
to the scalar product defined in equation (5.3). This is
easily proven by induction on n. The vector q(∅) is noth-
ing but the constant one. The corresponding eigenvalue is
θ

(∅)
N = −1, whence µ+

(∅) = 2 and µ−(∅) = 0. The eigenvalue
µ−(∅) = 0 is a remnant of the invariance of the action un-
der the symmetry cited in the footnote 4 of the previous

5 For similar calculations see reference [24].

section. In order to compute the eigenvalues in the sub-
space orthogonal to q(∅), the following formula turns out
to be useful:∑

Ω′

x|Ω4Ω
′| q

(Λ)
Ω′ = (1− x)|Λ|(1 + x)n−|Λ| q(Λ)

Ω , (5.5)

where Ω4Ω′ denotes the symmetric difference of Ω and
Ω′ (i.e. Ω4Ω′ ≡ (Ω\Ω′)∪(Ω′\Ω)). Using equation (5.5)
and the results of algebra outlined in Section 3 we get (for
Λ 6= ∅):

θN→∞(Λ) = 2ζ2
J

∞∑
m=1

ζ
weight(sm)
h , (5.6)

where weight(sm) is defined in Section 3 and

ζC = ζC(|Λ|, n, β) =

∫
dC P (C) e(n−2|Λ|)βC∫

dC P (C) enβC
, (5.7)

for C → h or C → J . When the one-dimensional Hamilto-
nians (1.2) satisfy the hypothesis of Lemma 3.3, the sum
in equation (5.6) can be explicitly computed yielding:

θN→∞(Λ) =
2 ζ2

J ζ
w0(f1,f2)+w1(f1,f2)
h

1− ζw1(f1,f2)
h

· (5.8)

If n ≥ 2|Λ| then θ(Λ, n;β) is positive and decreas-
ing with β. Moreover limβ→∞ θ(Λ, n;β) = 0 and
limβ→0 θ(Λ, n;β) = ∞. We can thus define the critical
temperatures βl,n for n/2 ≥ l = |Λ| ≥ 1, by requiring6

θ(Λ, n;β|Λ|,n) = 1 . (5.9)

If β > β|Λ|,n the “frozen” saddle point is stable with re-
spect to the direction q(Λ). If β < β|Λ|,n it becomes unsta-
ble: µ+

(Λ) = 1−θ(Λ) < 0 while µ−(Λ) = 1+θ(Λ) > 0 (it could
be guessed that the “imaginary” directions would be sta-
ble because of the physical interpretation of the overlaps).
In the limit n→ 0, βl,n → βc/l: the critical directions are
the ones corresponding to |Λ| = 1. It is easy to see that the
critical temperature βc coincides with the one obtained in
Section 3.

6 Conclusion

We have presented two derivations of the local stability
condition for the no-error phase. Both will be object of
the criticism of the skeptical reader. In the first one we ob-
tained the “mean field” equation describing the dynamics
of the decoding algorithm, equation (2.9), by making use

6 Notice that equation (5.9) can have more than one solution
for n < 2|Λ|. The “physical” critical point is obtained by taking
the limit n → 0 of the solution of equation (5.9) which exists
for any n.
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of heuristic arguments. Indeed we argued equation (2.9) to
be valid only in the replica symmetric approximation. In
the second derivation we made use of the replica method,
which has not (yet) well founded mathematical basis.

We think that the two derivations compensate each
other for their defects. Moreover they yield the same
replica symmetric saddle point equation (4.11) and give
the same picture of the instability which destroys the
no-error (frozen) phase. This corresponds to couples of
flipped ε(σ)’s. Finally thanks to the first derivation we get
some insight on the behavior of the decoding algorithm.
In particular we have seen that, in the frozen phase, it
approaches a no-error fixed point. This approach becomes
slower near to the boundary of the frozen phase.

In reference [1] the local stability threshold computed
here has been compared with numerical simulations for
two types of code, respectively the models 3 and 3 pre-
sented in Section 3. Good agreement was found only for
model 3. We propose two possible explanations of the dis-
agreement for model 3:

– the phase transition is a first order one;
– the turbo decoding algorithm used in reference [1] gets

stuck in some local minimum of the free energy, char-
acterized by a finite error probability per bit.

We have not yet enough information for choosing between
these two scenarios.

I thank G. Biroli, S. Caracciolo, R. Chiriv̀ı, B. Derrida,
M. Mézard and R. Monasson for discussions about this work.
Finally I am profoundly indebted with N. Sourlas for his advice
and constant support.

Appendix A: Useful algebra results

In this Appendix we remind to the reader some known
facts in the theory of finite fields and we prove the propo-
sitions stated in Section 3. These are nothing but simple
exercises and we work out them in detail only for greater
convenience of the reader. Finally we illustrate a few ap-
plications of the results obtained. The reader interested in
a more complete treatment can consult references [25,26].

Let us begin with some elementary definitions. The ba-
sic object is Z2 i.e. the field of integer numbers modulo 2.
A polynomial over Z2, f(x) ∈ Z2[x] is simply a polynomial
whose coefficients are in Z2. We say f(x) ∈ Z2[x] to be
irreducible if there do not exist two nonconstant polyno-
mials g(x), h(x) ∈ Z2[x] such that f(x) = g(x)h(x). Any
f(x) ∈ Z2[x] possess an unique factorization, i.e. a de-
composition of the form f(x) = f1(x)r1 . . . fh(x)rh where
fi(x) ∈ Z2[x] are irreducible and ri ≥ 1 are integer num-
bers. Given two polynomials f(x), g(x) ∈ Z2[x] we say
that f(x) divides g(x) (in symbols f(x)|g(x)) if there ex-
ists h(x) ∈ Z2[x] such that g(x) = f(x)h(x)7. For an ir-
reducible polynomial f(x) ∈ Z2[x] it does make sense to

7 Similarly, given two integer numbers p, q ∈ Z, we say that
p divides q (and write p|q) if there exists m ∈ Z, such that
q = mp.

define the order o(f): o(f) is the smallest positive integer
k such that f(x)|xk + 1. The basic result which we shall
employ in this appendix is the following:
Theorem A.1 Let f(x) be an irreducible polynomial over
Z2. Then f(x)|xk + 1 if and only if o(f)|k.

It is useful to know how to compute the order of an ir-
reducible polynomial. The main tool is the theorem below:
Theorem A.2 Let f(x) be an irreducible polynomial of de-
gree d over Z2. Then d is the smallest positive integer for
which o(f)|2d − 1.

Moreover it is obvious from the definition that o(f) ≥
deg(f).

Our first step will be the proof of Lemma 3.2 which we
restate here as follows
Lemma A.1 Let f(x) be a polynomial on Z2 with the fol-
lowing factorization

f(x) = fr11 (x) . . . frhh (x); ri ≥ 1 , (A.1)

where the polynomials fi(x) are irreducible over Z2. Let pi
be the smallest integer such that 2pi ≥ ri. Then f(x)|(1 +
xk) if and only if 2pi |k and o(fi)|k for i ∈ {1, . . . , h}.
Proof of Lemma A.1. Let us begin by noticing that, since
the fi(x) are irreducible, f(x)|(1 + xk) if and only if
frii (x)|(1 + xk) for i ∈ {1, . . . , h}. We can then limit our-
selves to the case f(x) = hr(x) with h(x) irreducible. It
is convenient to work in an extension of Z2, i.e. in a field
containing Z2 as a subfield. We choose an extension (let
us call it S) of Z2 such that both h(x) and (1 + xk) can
be decomposed in linear factors. The existence of such an
extension is a basic fact of field theory. We are then look-
ing for the k such that all the root of h(x) (in S) are roots
of (1 + xk) with multiplicity at least r. It is then neces-
sary to study the multiplicity of the roots of (1+xk). The
first observation is that, if k is odd, all the roots are sim-
ple. In fact d

dx(1 + xk) = kxk−1 has no roots in common
with (1 +xk). The second observation consists in noticing
that (1 + x2k) = (1 + xk)2. We deduce that (1 + x2mk)
with k odd has k distinct roots (the same as (1 + xk)),
each one with multiplicity 2m. The final outcome is that
hr(x)|(1+x2mk) if and only if 2m ≥ r and o(h)|k. �

From Lemma A.1 the explicit form of the period ω(f)
used in Section 3 is easily obtained:

ω(f) = 2max(p1,...,ph) lcm(o(f1), . . . , o(fh)) . (A.2)

The Lemmas 3.1 and 3.3 are easy consequences of
Lemma 3.2.

Proof of Lemma 3.1. Let us begin by considering
the series 1/f(x). We can always define the polynomi-
als ϕn(x) with deg(ϕn) < ω(f) such that 1/f(x) =∑∞
n=0 ϕn(x) xnω(f). Since f(x) divides (1 + xmω(f)) for

all m ≥ 1, we conclude that ϕn(x) = ϕn′(x) ≡ ϕ(x) for
all n, n′ ≥ 0 and (1 + xmω(f))/f(x) =

∑m−1
k=0 ϕ(x) xkω(f).

With the following definition

g(x)ϕ(x) ≡
L∑
l=0

gl(x) xlω(f), deg[gl(x)] < ω(f), (A.3)
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we get

g(x)
f(x)

=
∞∑
n=0

xnω(f)

min(n,L)∑
l=0

gl(x) ≡
∞∑
n=0

xnω(f)pn(x).

(A.4)

Notice that, for n ≥ L, pn(x) = p∞(x) ≡ g(x)/f(x) mod
xω(f). An upper bound on L is easily obtained from
equation (A.3) yielding8 pn(x) = p∞(x) for n ≥
d(deg[g(x)]− 1)/ω(f)e ≥ L. Clearly it cannot be p∞(x) =
0 otherwise we would conclude that f(x) divides g(x) in
contradiction with the hypothesis. In order to complete
the proof, let us suppose the following equation to hold

g(x)
f(x)

=
∞∑
n=0

xnω
′
p′n(x), (A.5)

with ω′ < ω(f), deg(p′n) < ω′ and p′n(x) = p′∞(x) for n
large enough. This implies that f(x) divides g(x)(1 +xω

′
)

but, since gcd(f, g) = 1, we would conclude that f(x)
divides (1+xω

′
) contradicting Lemma 3.2. �

Proof of Lemma 3.3. It suffices to specialize the content
of the previous paragraph to the case deg[g(x)] ≤ ω(f):

g(x)ϕ(x) = g0(x) + g1(x) xω(f) (A.6)

sm(x) ≡ g(x)
f(x)

(1 + xmω(f)) = g0(x) + {g0(x) + g1(x)}

×
m−1∑
h=1

xhω(f) + g1(x), (A.7)

whence

weight[sm(x)] = w0 + w1m, (A.8)
w0 ≡ weight[g0(x)] + weight[g1(x)]

−weight[g0(x) + g1(x)] , (A.9)
w1 ≡ weight[g0(x) + g1(x)]. (A.10)

�
What does it happen when the hypothesis of Lemma 3.3
are not satisfied? It is easy to guess the answer.
There exists a positive integer m0 such that, for m ≥
m0, weight(sm) grows linearly with m: weight(sm) =
w̃0(f, g)+w̃1(f, g)·m with w̃1(f, g) = weight(p∞). Thanks
to this fact we can always sum the series in equation (3.14)
in the interval 0 < β < β1. The discussion of the behavior
of equation (3.8) presented in Section 3 is then completely
general.

Let us return down to the earth and make a few exam-
ples. We shall consider the codes presented in reference [1]:

(a) The simplest non trivial case: f(x) = 1 + x, g(x) = 1.
Clearly both the polynomials are irreducible. The de-
gree of f(x) is deg[f(x)] = 1. Because of Theorem A.2
o(f)|21−1 = 1 whence o(f) = 1 = ω(f). Theorem A.1
implies that f(x)|1 + xk for each k ≥ 1. This con-
clusion is easily confirmed by the well known formula

8 Here use the definition dxe ≡ min{n ∈ Z : n > x}.

(1 + xk) = (1 + x)(1 + x + · · · + xk−1). Lemma 3.1
tells us that g(x)/f(x) =

∑∞
n=0 pnx

n with pn = p∞
for n ≥ 0 and that p∞ = 1 (1 is the unique non zero
polynomial of degree zero). We have thus rediscovered
the simple fact that (1 + x)−1 =

∑∞
n=0 x

n. Finally we
observe the hypothesis of Lemma 3.3 are satisfied and
that (with the notation of Eq. (A.6)), g0(x) = 1 and
g1(x) = 0. From equations (A.8–A.10) it follows that
weight [sm(x) = (1 + xm)/(1 + x)] = m which is easily
confirmed by observing that sm(x) = 1+x+· · ·+xm−1.

(b) A less elementary example is: f(x) = 1 + x + x2,
g(x) = 1 + x2. It is easy to see that f(x) is irreducible
and that g(x) = (1 + x)2 whence gcd(f, g) = 1. From
o(f)|2deg(f) − 1 = 3 and o(f) ≥ deg(f) = 2 we deduce
that o(f) = 3 = ω(f). In fact

1
1 + x+ x2

= 1 + x+ x3 + x4 + x6 + . . .

=
∞∑
n=0

ϕ(x)x3n , (A.11)

ϕ(x) = 1 + x . (A.12)

Thus by Lemma 3.2 f(x)|(1 + xk) if and only if k is
a multiple of 3. We can use Lemma 3.3 in order to
compute the weight of sm(x) = (1+x2)(1+x3m)/(1+
x+ x2). We see that g0(x) = 1 + x+ x2 and g1(x) = 1
whence weight[hm(x)] = 2 + 2m. With some book-
keeping one can confirm this result:

hm(x) = x+
m−1∑
l=0

(x3l+1 + x3l+2) + x3m ⇒

weight[hm(x)] = 2 + 2m. (A.13)

(c) Finally the generating polynomials used in reference [3]
to build the first example of turbo code: f(x) = 1 +
x+x2 +x3 +x4, g(x) = 1+x4. Also in this case f(x) is
irreducible and g(x) = (1 + x)4 yielding gcd(f, g) = 1.
Since o(f)|2deg(f) − 1 = 15 and o(f) ≥ deg(f) = 4, we
deduce that either o(f) = 5 or o(f) = 15. However we
know that (1 +x5) = (1 +x)(1 +x+x2 +x3 +x4) and
we conclude that o(f) = 5 = ω(f). In fact

1
1 + x+ x2

= 1 + x+ x5 + x6 + x10 + x11 + . . .

=
∞∑
n=0

ϕ(x)x5n , (A.14)

ϕ(x) = 1 + x . (A.15)

Using the fact that g0(x) = 1 + x+ x4 and g1(x) = 1
we get weight[hm(x)] = 2m+ 2.

Appendix B: On the asymptotic behavior
of the solutions of equation (3.8)

In this appendix we study equation (3.8) in order to ex-
tend to this case the results concerning equation (3.9)
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used in Section 3. We shall examine both the approach
of reference [13], which is based on the analogy with the
KPP equation and is a non rigorous one, and the approach
of reference [14], which employs probability theory and is
entirely satisfactory from the mathematical point of view.

We would like to deal with this type of equation:

Qn+1(Z) =
∫ ∞
−∞

P (V ) dV
∫ ∞
−∞

∞∏
i=1

p(h) dh

×
∫ ∞

0

∞∏
i=1

Qn(Zi) dZi

× δ

Z − ∞∑
i=1

exp

−βV − β
i−1∑
j=1

hj

Zi

 , (B.1)

with the requirement that
∫

dh p(h) h > 0 and the initial
condition P0(Z) = δ(Z − 1). Following reference [13] we
introduce the function:

Gn(x) ≡
∫ ∞

0

dZ Qn(Z) exp{−e−βxZ} , (B.2)

which satisfy this recurrence equation

Gn+1(x) =
∫ ∞
−∞

P (V ) dV
∫ ∞
−∞

∞∏
i=1

p(hi) dhi

×
∞∏
i=1

Gn(x+ V +
i−1∑
j=1

hj) . (B.3)

Let us make a few elementary observations concerning
equation (B.3): if 0 ≤ Gm(x) ≤ 1 for some m and
all x then 0 ≤ Gn(x) ≤ 1 for all x and n > m;
if lim supx→∞Gn(x) = g∞ < 1 then Gn+1 = 0; if
Gn(x) is increasing and 0 < Gn(x) < 1 for some x
(both these hypothesis are implied by Eq. (B.2)) then
limx→−∞Gn+1(x) = 0. The stationary uniform solutions
of equation (B.3) are GAn (x) = 0 and GBn (x) = 1. The first
one is obviously stable. If we consider a small fluctuation
around GBn (x), Gn(x) = 1 + ρn(x) we get:

ρn+1(x) '
∫ ∞
−∞

P (V ) dV

×
∫ ∞
−∞

∞∏
i=1

p(h) dh
∞∑
i=1

ρn(x+ V +
i−1∑
j=1

hj) , (B.4)

which can be diagonalized in Fourier space:

ρ̂n+1(k) ' P̂ (k)
1− p̂(k)

ρ̂n(k) ≡ λ(k)ρ̂n(k) . (B.5)

Notice that |λ(k)| > 1 for k small enough and that |λ(k)|
diverges at k = 0 in agreement with the previous obser-
vation that if Gn(x) = 1 − ρ then Gn+1(x) = 0. The
preceding observations lead us to the hypothesis that the
n→∞ behavior of our problem is controlled by front-like

solutions Gn(x) = g(x− c(β)n) interpolating between the
stable state GAn (x) = 0 at x → −∞ and GBn (x) = 1 at
x→∞.

This scenario is easily confirmed in the case with-
out disorder. If P (V ) = δ(V − V0) and p(h) = δ(h −
h0) one obtains Pn(Z) = δ(Z − eβc(β)n), Gn(x) =
exp{−e−β(x−c(β)n)} with

c(β) =
1
β

log
e−βV0

1− e−βh0
· (B.6)

In the general case we assume the existence of front-
like solutions with the large x behavior Gn(x) ∼ 1 −
e−β(x−c(β)n) + o(e−βx). The front velocity is obtained
through the construction given in equations (3.12, 3.13)
with

v(β) ≡ 1
β

logφ(β) =
1
β

log
〈e−βV 〉

1− 〈e−βh〉 · (B.7)

Notice that 〈h〉 > 0 implies that 〈e−βh〉 < 1 in some
interval 0 < β < β1 and that βc < β1. This remark allows
us to sum the series

∑
k〈e−βh〉k in the range 0 < β < βc,

thus obtaining equation (B.7). The same remark will be
useful in the following.

Let us consider now the more rigorous approach used
in reference [14]. We start by defining the polymer model
which corresponds to equation (B.1). We have to use a
tree with a numerable set of branches stemming from each
node. A node of the nth generation is identified by n in-
teger numbers ω ≡ (ω1, . . . , ωn); its generation is denoted
by |ω|. We denote by 0 the root node (i.e. the only node of
the zeroth generation). We say that the node ω′ belonging
to the mth generation is a descendant of the node ω of the
nth generation (and write ω ≺ ω′ if n < m or ω � ω′ if
n ≤ m ) if ω1 = ω′1, . . . , ωn = ω′n. The node ω′ is said to
be an older brother of the node ω with |ω′| = |ω| = n if
ω1 = ω′1, . . . , ωn−1 = ω′n−1 and ωn > ω′n. A pair of ran-
dom variables V (ω) and h(ω) is attached at each node.
All these variables are statistically independent and have
marginal distributions p(h) (the h(ω)’s) and P (V ) (the
V (ω)’s). A directed polymer is given by a pair of nodes
ω1 ≺ ω2. To each polymer we assign an energy as follows:

E(ω1, ω2) =
∑

ω1�ω≺ω2

V (ω)+
∑

ω1≺ω�ω2

∑
ω′:ω′ is an older

brother of ω

h(ω′).

(B.8)

Moreover we use the shorthand E(0, ω) → E(ω) and de-
fine the following partition functions:

Zn(β) ≡
∑

ω: |ω|=n
e−βE(ω) , (B.9)

Zn(β|ω) =
∑
ω′�ω:

|ω′|−|ω|=n

e−βE(ω,ω′) . (B.10)

The velocity of the wavefront studied in the previous
paragraphs corresponds in this language to the random
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variable:

c(β) ≡ lim
n→∞

1
nβ

logZn(β) . (B.11)

The model has two phases. In the high temperature phase
(β ≤ βc) the fluctuations of Zn(β) are small and

c(β) = lim
n→∞

1
nβ

log〈Zn(β)〉 = v(β) . (B.12)

In the low temperature phase (β > βc) the fluctuations
become large and c(β) is fixed by simple convexity and
monotonicity arguments. The key point of the approach
used in reference [14] is to estimate these fluctuations by
proving that, for β < βc:

〈Zn(β)α〉
〈Zn(β)〉α ≤ Bound(α, β) (B.13)

for some 1 < α < 2 uniformly in n. This is enough for
obtaining equation (B.12).

Let us define the normalized variables Mn(β) ≡
Zn(β)/〈Zn(β)〉. In reference [14] the bound in
equation (B.13) is obtained starting with the second
moment of Mn(β), and then refining the inequality for
the fractional moments of order 1 < α < 2. Notice that
looking at the mth moment of the partition function is a
well known method [27] for obtaining an upper estimate
on the critical temperature (the estimate becomes worser
as m gets larger). Let us have a look at the first two
integer moments:

〈Zn+1(β)〉 = 〈e−βV 〉
∞∑
k=0

〈e−βh〉k 〈Zn(β)〉 , (B.14)

〈Z2
n+1(β)〉 =

(
〈e−βV 〉

∞∑
k=0

〈e−βh〉k
)2 [

〈Z2
n(β)〉 − Zn(2β)

]
+〈e−2βV 〉

∞∑
k=0

〈e−2βh〉k
(

1 + 2
∞∑
l=1

〈e−βh〉l
)
〈Zn(2β)〉 .

(B.15)

In general the mth moment is finite (but not necessarily
uniformly bounded) only if 〈e−mβh〉 < 1 i.e. if β < β1/m.
There is no integer moment of order greater than one
which remains finite in the interval (0, βc). This fact
forces us to a slight modification of the proof presented
in reference [14]. We use the trivial identity:

Zn+1(β) =
∑

ω: |ω|=1

e−βE(ω)Zn(β|ω) , (B.16)

and estimate the αth moment (with 1 < α < 2) as follows:

Zαn+1(β) =

{ ∑
ω1:
|ω1|=1

∑
ω2:
|ω2|=1

e−β[E(ω1)+E(ω2)]

×Zn(β|ω1) Zn(β|ω2)

}α/2
≤
∑
ω1:
|ω1|=1

∑
ω2:
|ω2|=1

e−
αβ
2 [E(ω1)+E(ω2)]

×Zα/2n (β|ω1) Zα/2n (β|ω2) . (B.17)

For a temperature such that αβ < β1 we can take the
averages and sum up the series:

〈Zαn+1(β)〉 ≤
∑
ω:
|ω|=1

〈e−αβE(ω)〉 〈Zαn (β)〉

+
∑

ω1 6=ω2:
|ωi|=1

〈e−
αβ
2 [E(ω1)+E(ω2)]〉 〈Zα/2n (β)〉2

≤ φ(αβ)〈Zαn (β)〉+ 2φ(αβ)
∞∑
l=1

〈e−
αβ
2 h〉l〈Zn(β)〉α.

(B.18)

Rewriting this formula for the normalized variables we get

〈Mα
n+1(β)〉 ≤

[
φ(αβ)
φ(β)α

]
〈Mα

n (β)〉 + 2
[
φ(αβ)
φ(β)α

] ∞∑
l=1

〈e−
αβ
2 h〉

≡ ψ(α, β)〈Mα
n (β)〉+ χ(α, β) . (B.19)

At this point we observe, following reference [14], that,
if dv

dβ (β) < 0 (i.e. β < βc) then we can choose α > 1
such that ψ(α, β) < 1. The condition to be imposed on α
for obtaining this inequality is α < βc/β (notice that this
inequality implies the previous one α < β1/β). The desired
bound is obtained by using Gronwall lemma together with
the fact that 〈Mα

0 (β)〉 = 1:

〈Mα
n (β)〉 ≤ ψn(α, β) +

1− ψn(α, β)
1− ψ(α, β)

χ(α, β)

≤ 1 +
1

1− ψ(α, β)
χ(α, β) . (B.20)

Appendix C: The replicated partition function

In this appendix we describe in detail the derivation of
the expression (4.1) for the replicated partition function.
From equation (1.1) we get our starting point for this
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calculation:

Zn =
1
N !

∑
ρ

∫
dP [J]

∑
{σ(1),a}

∑
{σ(2),a}

×
N∏
i=1

n∏
a=1

δ
(
ερ(i)(σ(1),a), εi(σ(2),a)

)
× exp

[
−β

2∑
k=1

n∑
a=1

H(k)(σ(k),a)

]
, (C.1)

where the sum over ρ runs over all the N ! permuta-
tions of N objects. Equation (4.1) is easily obtained from
equation (C.1) using the identity

1
N !

∑
ρ

N∏
i=1

δ
ε
(1)
ρ(i),ε

(2)
i

=
eN

2nN

∫
N

π
dq0 dq̂0

∫ ∏
a

N

π
dqa dq̂a

×
∫ ∏

(a,b)

N

π
dqab dq̂ab · · ·

N∏
i=1

[q0

+
∑
a

qaε
(1),a
i + . . . ]

N∏
j=1

[q̂0 +
∑
a

q̂aε
(2),a
j + . . . ]

× exp

−N
q0q̂0 +

∑
a

qaq̂a +
∑
(a,b)

qabq̂ab + . . .

 ,
(C.2)

which, as we shall prove below, holds to the leading or-
der in the N → ∞ limit. In equation (C.2) the ε

(k)
i ≡

(ε(k),1
i , . . . , ε

(k),n
i ) with k = 1, 2 are replicated spin vari-

ables, and δε(1),ε(2) ≡
∏n
a=1 δε(1),a,ε(2),a is the correspond-

ing delta function. The multi-overlaps qa1...al and q̂a1...al

are understood to be a complex conjugate pair.
In order to represent the random permutation ρ we

introduce the matrix Cρij ≡ δi,ρ(j). We can then rewrite
the l.h.s. of equation (C.2) as follows:

1
N !

∑
ρ

N∏
i,j=1

n∏
a=1

[(
1− 1

2
Cρij

)
+

1
2
Cρijε

(1),a
i ε

(2),a
j

]
. (C.3)

The matrix elements Cρij are all zeros or ones and satisfy
the constraints:

∑N
i=1 C

ρ
ij = 1 for each j = 1, . . . , N , and∑N

j=1C
ρ
ij = 1 for each i = 1, . . . , N . There is a one-to-one

correspondence between such matrices and the permuta-
tions of N objects. Rewriting the sum over the permuta-
tion ρ in equation (C.3) as a sum over these matrices Cij ,
we get

1
N !ωN

2−N
0 ωN1

∑
{Cij}

 N∏
j=1

δ1,
PN
i=1 Cij

N∏
i=1

δ1,
PN
j=1 Cij


×

N∏
i,j=1

{
ωCij

n∏
a=1

[(
1− 1

2
Cij

)
+

1
2
Cijε

(1),a
i ε

(2),a
j

]}
.

(C.4)

In equation (C.4) we introduced the weights ωCij for later
convenience. Since the number of entries Cij such that
Cij = 1 is N for any matrix satisfying the mentioned con-
straints, we can assign any non zero value to the weights
ω0 and ω1. Our (quite natural) choice will be

ω0 = 1− 1
N
, ω1 =

1
N
· (C.5)

We rewrite now equation (C.4) using the following repre-
sentation of the Kronecker δ function:

δ1,A =
∮

dz
2πiz2

zA , (C.6)

where the integration contour encircles the origin in the
complex z-plane. From equation (C.4) we get

1
N

N∏
i=1

∮
dzi

2πiz2
i

N∏
j=1

∮
dwj

2πiw2
j

N∏
i,j=1

1∑
Cij=0

ωCij (ziwj)
Cij

×
n∏
a=1

[(
1− 1

2
Cij

)
+

1
2
Cijε

(1),a
i ε

(2),a
j

]
, (C.7)

where N ≡ N !ωN
2−N

0 ωN1 ' e−2N . Summing over the
numbers Cij and proceeding to the leading order as
N →∞, we obtain from equation (C.7)

1
N

N∏
i=1

∮
dzi

2πiz2
i

N∏
j=1

∮
dwj

2πiw2
j

N∏
i,j=1

[
1− 1

N
+
ziwj
2nN

×
n∏
a=1

(1 + ε
(1),a
i ε

(2),a
j )

]
' eN

N∏
i=1

∮
dzi

2πiz2
i

×
N∏
j=1

∮
dwj

2πiw2
j

exp

 1
2nN

N∑
i,j=1

[
ziwj +

∑
a

ziε
(1),a
i wjε

(2),a
j

+
∑
(a,b)

ziε
(1),a
i ε

(1),b
i wjε

(2),a
j ε

(2),b
j + . . .

 . (C.8)

We can now disentangle the dependence upon the spin
variables ε(1)

i and ε(2)
j in equation (C.8), using the follow-

ing identity:

eab/N =
∫
N

π
dqdq̂ e−Nqq̂+aq+bq̂, (C.9)
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which holds for complex conjugate q and q̂. From
equation (C.8) we get

eN
∫
N

π
dq0 dq̂0

∫ ∏
a

N

π
dqa dq̂a · · ·

N∏
i=1

∮
dzi

2πiz2
i

N∏
j=1

×
∮

dwj
2πiw2

j

exp

[
1

2n/2

N∑
i=1

(
q0zi +

∑
a

qaziε
(1),a
i + . . .

)

+
1

2n/2

N∑
j=1

(
q0wj +

∑
a

qawjε
(2),a
j + . . .

)
× exp

[
−N

(
q0q̂0 +

∑
a

qaq̂a + . . .

)]
. (C.10)

The integration over the zi and wj variables can be done
now yielding, after a few manipulations, equation (C.2).
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